
considering several symmetric structures in systems with a regular disperse phase distribu- 
tion [4]. 
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COOLING OF A MAGNETIZED PLASMA AT A BOUNDARY WITH AN EXPLODING METAL WALL 

S. F. Garanin and V. I. Mamyshev UDC 533.932 

Cooling of a magnetized plasma at the boundary with a cold wall, which is accompanied 
by reaction of magnetic and thermal processes, leads in a number of cases to anomalously 
high effective thermal conductivity and magnetic diffusion coefficients. With cooling of a 
hydrogen plasma at a boundary with an insulator or a dense multicharged plasma, the effec- 
tive thermal conductivity appears to be of the order of Bohm thermal conductivity [i, 2]. 

With cooling of a plasma bounded by a rigid and ideally conducting wall, as was shown 
in [i], the increase in thermal conductivity compared with classical magnetized thermal con- 
ductivity is less marked and it is only possible for a plasma with ~ >> 1 (6 = 16~NoT0/H0 2 is the 
ratio of thermal pressure of the plasma to magnetic pressure; N o , T o , and H 0 are density of 
electrons, temperature, and magnetic field in the plasma at a distance from the boundary). 
A metal wall may be considered to be rigid and ideally-conducting in the case when it does 
not explode due to action of heat flow from the plasma, i.e., its thermal conductivity in 
the condensed phase appears to be sufficient in order to remove heat without evaporating. 
This condition is fulfilled with relatively high energy densities (for plasma with T O = I 
keV and ~ = i, with H 0 < 0.2 MG). With higher energy densities presence of an explosive heat 
flow for the metal markedly changes the nature of cooling and it increases heat losses for 
the plasma. This case is considered in the present work. However, the magnetic fields are 
not considered to be very high (H 0 > i0 MG) since with H 0 < i0 MG when there is explosion 
of a skin layer by Joule heat and the metal loses conductivity, the problem is reduced to 
that considered previously [I, 2] of plasma cooling at a boundary with an insulator. 

Let all of the values depend on coordinate X perpendicular to the metal surface, and time 
t, magnetic field H, and electric field E are perpendicular to each other and axis X, and 
characteristic times are large compared with gas dynamic times, so that total pressure both 
in the hydrogen plasma and in metal vapor have time to equalize: 

p +  ~ / 8 ~  = Po - 2NJ'o + ~18~ (0. i )  

(p is thermal pressure). Equations for the magnetic and electric fields and the thermal 
balance for the plasma [3] are written in Lagrangian variables, and have the form 

O'-X=-- c \ t i t  p ' 0"-~ c E = j / 6 - - ~ - ~ - f .  ( 0 . 2 )  

dg p d p _  OQ ._~ ]E, Q aT bA~ 
P d t  p d t  O'-X --- - -  X ~ -t- ], 

where 9 is density of the mass; c is internal energy; o, X, bA are transverse conduction, 
themal conductivity, and thermoelectric coefficients; Q is density of heat flow. 

i. Cooling of a Dense Plasma. As shown in [I], existence of anomalously high effective 
thermal conductivity coefficients means that the problem for a hydrogen plasma is quasista- 
tionary: hydrogen plasma density in the boundary zone is large compared with density N 0, and 
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in Eqs. (0.2) for magnetic and electric fields and the thermal balance for plasma in the 
boundary zone it is possible to ignore derivatives with respect to time and to assume the 
electric and energy flow are constant. Then (0.2) takes the form [2] 

E = c OH bA OF 
4 ~  ax e ox '  ( 1 . 1 )  

[(c/4~)EH0(l + 5~/4) is flow of energy into the discharge zone of the plasma]. 

Radiation plays the main role in heat transfer in ionized vapors. As a result of ra- 
diant thermal conductivity the mass of vapors in the discharge zone markedly exceeds the 
mass of the plasma. Therefore, the temperature of vapors is much lower than the temperature 
of the hydrogen plasma and the temperature of the hydrogen plasma at the boundary with the 
vapors may be assumed to be zero. 

Thus, if the magnetic field at the boundary of a hydrogen plasma and vapors H l is known, 
then boundary conditions for (i.i) will be 

T(O) = O, H(O) = H~, N(--Xo) = 0 ( 1 . 2 )  

( f o r  t h e  v a p o r  b o u n d a r y  we a s sume  t h a t  X = 0 ,  f o r  t h e  d i s c h a r g e  z o n e  b o u n d a r y  X = - X 0 ) ,  and  
f o r  t h e  p l a s m a  t h e  p r o b l e m  i s  r e d u c e d  t o  one  o f  c o o l i n g  a t  a b o u n d a r y  w i t h  an  i n s u l a t o r  [ 2 ] .  

S i n c e  t h e  ma in  c o n t r i b u t i o n  t o  t h e  mass  o f  t h e  p l a s m a  a c c u m u l a t e d  i n  t h e  d i s c h a r g e  g i v e s  
a region in which the degree of electron magnetization ~eTe - i, and the total pressure P0 
is prescribed, then for a changeover in (i.i) to dimensionless values as a unit for measuring 
pressure it is natural to take P0, and units for measuring temperature [T] and density [N] so 
that with T = [T], N = [N] there is p = P0, and ~eTe ~ i. 

By selecting [T] = (ce~]/~o) ~15, IN]= Po/[T] (m is mass of an electron, X is Coulomb loga- 

rithm) and introducing dimensionless coordinate x = E X and dimensionless 0(x) = eO,2mO,2cO,4~o,4p~,$ 

T/[T], n(x) = N/[N], h = H/8~0, the set of Eqs. (0.i), (i.i) may be rewritten in the form 

4 
2nO + h ~ = J., --fi- 08)2 h '  + bO' = i ,  

bOW+T g +  ---- V~+I3 
i 

(1.3~) ' 

3 h 08/2 and where ~, b, g, gi depend on the degree of magnetization y= ~0e% = ~  are determined 
for example by approximation equations [3] 

(z t 6.42y' -JC. i .86 y.(i.5y s -{- 3.05) 
. . . .  b =  A " 

4.66y2 + t2,t 2y~ + 2 , ~  ( 1 . 4 )  
g - -  A , gi y~ + 2.7y~ + 0.677 s 

A ~- 3.77 + i4 .8y~+  y4, y l =  y / ] / ' 9 i 2 A  

(A is atomic weight). Somewhat more accurate equations for a, b, and g are given in [4]: 

_ 3.03y + t.37 
(~ = I y~_~ 6.72y + 2,77t (1.5) 

v (I.5v' + 2.~) ..... 4.66v + 6.t8 
b =  ys + 7.09y2 + 3.27y + 2.87' g - -  ya + 5.35y~ _{_ 2.31y + L93 ~ 

Boundary conditions (1.2) in dimensionless variables are written as h(0)-----h,=--H,/]/~-ffo, 
0, n(x 0) = 0. x~ 

The mass of plasma accumulated in the boundary layer (mass of deposited plasma) a----~ • 
N dXwill be determined in terms of dimensionless variables 0 

P0 af;~L (1.6) 

where 
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= S ndx. ( 1 . 7 )  
0 

since in view of the condition for freezing-in the magnetic field in a plasma at a distance 
from the discharge zone the plasma velocity is cE/H0, then the rate of plasma mass accumula- 
tion 

da/dt=N~176 (1.8) 

By expressing E in terms of a using (i.6) we obtain a differential equation 

da 

-a 7 

The value of ~ as a function of $ and h i was computed in [2] for kinetic coefficients (1.4). 

For a complete statement of the problem it is necessary to determine magnetic field H i . 
With quite high plasma density this may be done by means of a set of normal differential equa- 
tions. In fact, the discharge resistance for a hydrogen plasma according to (1.6)-(1.8) 
falls with an increase in density No, but the discharge resistance for metal vapor does not 
depend on No; therefore, with quite a high density a magnetized hydrogen plasma vapor con- 
ductivity may be ignored and it may be assumed that the magnetic field in them is constant 
(H = Hi). In order to calculate it we use the condition for magnetic flux conservation 

~(H~X~) = cE ( i . 9 )  

f o r  a l a y e r  o f  v a p o r s  w i t h  t h i c k n e s s  H i and a c o n d i t i o n  f o r  e n e r g y  c o n s e r v a t i o n  assuming  
t h e  v a p o r s  a r e  an i d e a l  gas  w i t h  an a d i a b a t i c  index  N: 

eik~J-~) p~-~- +-a-iks= Xl ,+gS-aT- X ~ ( i . i0)  

[Pl  i s  t h e r m a l  v a p o r  p r e s s u r e  which  i s  c o n s t a n t  due t o  c o n s t a n c y  o f  H = H z and e q u i l i b r i u m  
c o n d i t i o n  ( 0 . 1 ) ] .  I t  s h o u l d  be n o t e d  t h a t  a c o n d i t i o n  f o r  e n e r g y  c o n s e r v a t i o n  i s  o n l y  used  
in the case when the geometry of the system is such that the flow of energy emitted from the 
vapor surface is completely balanced by that arising from the direction of the surrounding 
walls (closed system). In favor of the opposite limiting case when the flow of radiation 
moving away from the wall is not balanced (open system) is that given below. The set of Eqs. 
(1.6), (1.8)-(1.10), together with equilibrium conditions Pz + H~/8~ = P0, entirely deter- 
mine cooling of a dense plasma. 

With P0 = const, N O = const, H 0 = const, $ = const we find that plasma deposition occurs 
by a diffusion rule 

a ~  
V e PoNo r ~ Polio 

2~ e It o t, E = 2ec Not ' 

_/'2~c Polio t x,=v  
(l.li) 

and dimensionless magnetic field h i 

i.e. 

is determined from an algebraic equation 

h f 7 - -  2 2 + 2.5~ 
l ~ - - h i  q- =0, ?- i 

t 3 5~/4)1" (i.if) 

0.4? -+ 0: 
With ~ § 0, h 1 * 1, and w i t h  ~ § ~, h i ~ r  . t h u s ,  a c c o r d i n g  t o  [2] w i t h  B § 0, ~ * 0 

and w i t h  ~ * ~, ~ * c o n s t .  The r e l a t i o n s h i p  ~(B, h z ( B ) )  f o r  h z ( ~ )  f rom ( 1 . 1 2 )  o b t a i n e d  by 
means o f  Eqs.  ( 1 . 3 )  and ( 1 . 7 )  f o r  s e t  o f  c o e f f i c i e n t s  a ,  6, g f rom ( 1 . 5 ) ,  g i  (A = 2) f rom 
( 1 . 4 )  and w i t h  ~ = 1 .21"  i s  shown in  F i g .  1 ( c u r v e  1) .  Given h e r e  f o r  c o m p a r i s o n  i s  t h e  
r e l a t i o n s h i p  ~(~,  h i ( B ) )  f o r  s e t  o f  c o e f f i c i e n t s  ( 1 . 4 )  ( c u r v e  2 ) .  I t  i s  n o t e d  t h a t  a l t h o u g h  

�9 X = 1.21 c o r r e s p o n d s  a p p r o x i m a t e l y  t o  t h e  a d i a b a t i c  index  f o r  coppe r  v a p o r  in  t h e  r e g i o n  of  
mega-Gauss  m a g n e t i c  f i e l d s  ( s e e  t h e  n e x t  s e c t i o n ) .  
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the difference between coefficients (1.4) and (1.5) is quite marked (e.g., for b it reaches 
30%), the difference between values of $(~) does not exceed 6%. This points to a weak depen- 
dence of $ on the value of kinetic coefficients, and apparently in addition mutual balancing 
of deviations of a different sign for (1.4) from (1.5) for different met e is marked. 

Since with large 6, hl ~ 0, the effective diffusion coefficient D ~ 2~cP0/eNoH 0 with 
cooling of a dense plasma at a boundary with an exploding metal wall is the same as with 
cooling at a boundary with an insulator [$(~ + ~) = 0.18, D = cT0/eH 0] and it exceeds Bohm 
thermal conductivity by about an order of magnitude, but with $ = I when $ = 0.3 it appears 
to be of the order of Bohm thermal conductivity. 

In order to check the theoretical results presented here determining cooling of a dense 
plasma close to an exploding metal wall, numerical modeling was performed for cooling of a 
deuterium plasma with T o = 0.5 keV, H 0 = 0.5 MG, 8 = i close to a copper wall. In modeling, 
consideration was given (both for deuterium and for copper) to hydrodynamic movement, mag- 
netic diffusion, and electron thermal conductivity. In addition, for deuterium the addi- 
tional contribution was considered to the electric field and heat flow due to the Nernst 
effect [terms with coefficients b A in (0.2)] and ionic thermal conductivity, and for copper 
this included radiant heat transfer. Kinetic coefficients ~, bA, g in deuterium were found 
from Eq. (1.5), and gi from (1.4). 

The equation of state for copper used in the calculations (in cm, g, usec, temperature 
in eV) had the form 

8(p, r )=  ~I(P)+ ~(P, r )+  %(p, r), 
p(p, T)=  pl(p)+ P2(P, T )+  p~(p, T), 

where  ez= (2.32/po)(52.l/2.t --  51.5/1,5 + 4/21), p , =  2:32(53a- 6~: 5) (p ,=  8 .9  g/cma~ 5 = P/Po); %=  
0.0121 T31~Sw~," v.= (10/3)sep;~ e~= (0.965/A). [t.5(I + z)T + O(z)], p~=(O.965/A)p(l ~ z)T; A i s  a tomic  
weight equal to 63.51 z was determined by an approximation method for solving the Saha equa- 
tion for repeated ionization [5] using transcendental equation ~z + 0.5)= T In(317ATS/2/(zp)); 

l(z) are ionization potentials; Q(z) are losses in ionization; Q(z)=~f(z)., Conductivity o 
I 

for copper was calculated in the plasma region (p < 0.28 g/cm ~) by equations in [6]: 

for z > 1 

s 3,25 + t,41/z T 8/2 
=0.871-10 I T ~  z~ ' 

~ = l n ( t + O ' O S - - 2 f  ~3! l- 
z p=(t + z ) ) '  

for z < i 
t 

( 7 =  
e ~' t - - z  9' o.594.1o- ~ + - - - ; -  t.3. to- 

1,, (t. + 0.037 
F t,~ ] '  

(1.13) 
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in the condensed phase region (p > 2.8 g/cm 3) 

4.83.108 
a = ~0.00048, (1.14) 

and in the intermediate region (0.28 g/cm 3 < p < 2.8 g/cm 3) o was determined by means of inter- 
polation with respect to density between Eqs. (1.13) and (1.14). Electron thermal conductiv- 
ity in copper was assumed to be unmagnetized, and the coefficient of electron thermal conduc- 
tivity for copper was found from the Weideman-Franz rule 

~kz 
X=87 ~ 

(k is Boltzman constant). For radiation energy transfer a forward-backward approximation 
[5] was used with path i = (4/3)s r (s is Rosseland path) in order to provide correct limit- 
ing conversion to the thermal conductivity equation. The path depended on temperature and 
density (gray substance) and it was [5] 

for z>i 

for , ~ <  I 

T7/2 ..42 
= o,3 - j  7 ;  

lr = 0,3 TV/~AZ 
p-"-~ z'-~-. 

A boundary condition determining spreading of radiation was equality to zero of radiant flow 
at the boundary of the discharge zone (closed system). In the initial condition it is as- 
sumed that copper has a normal density 6 = 1 and is close to room temperature, e = 0.0013. 

Presented in Fig. 2 are temperature and magnetic field profiles at instant of time t = 
0.85 ~sec obtained by means of Eqs. (1.3) (solid curves) and as a result of numerical modeling 
(broken curves). Comparison points to satisfactory agreement. The agreement between values 
of cooled plasma volumes is much better. With numerical modeling the plasma thickness de- 
creased at this instant of time by AX = 0.042 cm, and according to (i.ii) for deposited plasma 
thickness AX = 0.045 cm. 

2. Shunting Discharge for Metal Vapors. In the opposite case to that considered above, 
with quite low hydrogen plasma density the conductance of metal vapors is determinant, and 
the main role is played by the discharge for metal vapors thus shunting the discharge for the 
hydrogen plasma. We consider the problem in which in the initial instant of time a plasma 
with constant temperature, density, and magnetic field throughout the volume is in contact 
with a cold copper wall. Radiation, whose transfer with long times for closed system is 
found from the thermal conductivity equation, is fundamental in the heat transfer in metal 
vapors. Since a typical scale of length is absent from the problem, its solution is self- 
modeling and conductivity and magnetic diffusion are governed by the diffusion nature of 
self-modeling. Consideration of this problem differs from that of diffusion of a magnetic 
field accompanied by radiant thermal conductivity at an insulator [7] only in boundary con- 
ditions. 

For the equation of state, radiation path, and conductance of copper vapors we assume 
a stepwise form for the dependences on temperature and density. Then by using for these 
values equations of the previous section in the regions of temperature 3-30 eV and density 
10-i-10 -3 g/cm 3, we obtain approximately the following dependences: P/O = 0.0075Tl'ST/ 
p0.Z4, s = 10-6T/P 1"64, o : 2.7.108T~ ~ adiabatic index 7 = p/co + I = 1.21. In 
order to change over to dimensionless variables, units for measuring temperature [T] and 
density [p] are chosen similar to [7] so that thermal diffusion and magnetic diffusion coef- 
ficients ~= c~o are a single order of value: aSB [T]41r([T], [p])/Po=~([T], [p]) (aSB = 1.03- 
10 -6 is Stefan--Boltzman constant), and thermal pressure is of the order of the prescribed 
P0: p([T], [p]) = P0; then [T] = 12 eV p~.31 (GPa), [p] = 0.01 g/cm 3 P~'57(GPa). By using 

the self-modeling variable ~=390y@dX (g/cm2)/[/~psec)P~.37(GPa)] and introducing dimen- 
sionless functions 

r = [ T ] 0 ( ~ ) ,  p = [p ln (~ ) ,  H = V'S-h--Poh(~), 

E = 0,63 kV p~,3 ~Pa ) 8[~ s w p],8 (aPa) ,o,, 2,5. o 
a m  

w ~3sea X(~), X 0,25 cm p~_2 (GPa) 
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set of Eqs. (0.i), (0.2) is rewritten in the form 

O',67nO,S6+ h 2 =  t ,  

( ) �9 de ~ dh h dh t i6 dO ( 2 . 1 )  dn 00,92 04 

dq e 2 00,92 5 ( t 4  00,67 dO 01'67 dn) dx 

We f o r m u l a t e  boundary c o n d i t i o n s  fo r  system ( 2 . 1 ) .  Heat flow a t  the  boundary wi th  the  
plasma (~ = 0) may be c a l c u l a t e d  as t he  d i f f e r e n c e  between t o t a l  energy  flow a r r i v i n g  in t he  
d i s c h a r g e  zone of  the  plasma (c/4~)EH0(1 + 5~/4) ,  and the  flow of e l e c t r o m a g n e t i c  energy  
(c/4~)EH 1 (H 1 i s  magnet ic  f i e l d  a t  t he  boundary of t he  hydrogen plasma and vapo r s ) .  Thus, 
one of t he  boundary c o n d i t i o n s  a t  t h i s  boundary i s  the  connec t ion  between h e a t  f low and the  
e l e c t r i c  f i e l d  which in  d imens ion les s  v a r i a b l e s  appears  as 

[i + (5/4) ~ hi] e (0). (2 2) q(O) = [ 

The second boundary condition emerges from the fact that the discharge for vapors is shunting 
for the hydrogen plasma discharge, i.e., for the hydrogen plasma discharge in this case we 
assume that E = 0, and this means from (i.ii) ~ = 0, and since ~ reverts to zero with h I = I, 
then the boundary condition should be assumed as 

h t=  I. (2.3) 

At the boundary of vapors with unevaporated metal boundary conditions will equal zero for 
temperature, heat flow, and electric field: 

0(~o)= q(~o)= g(~o) = O. (2 .4 )  

By solving set (2.1) with boundary conditions (2.2)-(2.4) using (1.8) we determine the 
thickness of deposited plasma: 

AX = 0,25 . . . .  + ( 2 . 5 )  cm po,----~ (GPa---~ ~ (u) 

We e s t i m a t e  t he  o rde r  of va lues  c h a r a c t e r i z i n g  the  d i s c h a r g e  zone wi th  l a r g e  and small  
~. With ~ >> i in equations for heat transfer it is possible to ignore the role of terms with 
the magnetic field, the electric field is found from relationship (2.2), then 8 ~ ~0,i0 n 
~-0,22, x ~ ~0,47, e(0)~ ~-0,03 , and the magnetic field fades exponentially into the depth of the 
discharge zone. With $ << i in the discharge zone 81,67n0,86~ ~ , and from (2.1) we have 

0 ~ ~o,42, n ~  ~o,~5, x ~ 8(0)~ ~o,2~. (2.6) 

Some results of numerical calculations of set (2.1) with boundary conditions (2.2)-(2.4) 
are presented in Figs. 3 and 4. Shown in Fig. 3 as a function of ~ are the electric field 
at the entrance to the discharge e(0), the mass of vapors in the discharge ~0 magnetic field 
at the boundary with unevaporated metal h(~0), and the ratio of volume occupied by vapors 
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X(~0) to the volume of deposited plasma s m x (~o) / e (O) ] / t  + ~. Solid curves in Fig. 4 are pro- 
files for the magnetic field and temperature found as a result of solving Eq. (2.1) and con- 
verted for comparison with results of numerical modeling in dimensional units for the case 
of plasma cooling with H 0 = i MG, T o = i0 keY, $ = i at instant of time t = 0.035 ~sec. 
Given here for this case (broken curves) are the results of numerical modeling obtained in the 
manner described in part i. Numerical modeling gives a smaller size of the region occupied 
by the discharge which is explained by the effect of the hydrogen plasma discharge which is 
not considered in calculation by Eq. (2.1). This difference appears in the thickness of 
deposited plasma, which according to (2.5) is AX = 0.047 cm, and with numerical modeling is 
AX = 0.036 cm. 

Until now we considered the system to be closed so that the flow of energy radiated 
from the surface of vapors is completely balanced by radiation arriving from the direction 
of the surrounding walls. We move to the case of an open system when the geometry is such 
that this flow is not balanced by anything. Then, in vapors due to release of heat, the 
characteristic thermal pressure is much less than the magnetic and thermal pressure of a hy- 
drogen plasma 8v ~ i, and ~ changes with time. In order to determine relationship ~v(t) it 
is considered that heat flow from the surface, corresponding in this case to black body 
radiation Q ~ T4(t), should be balanced by heat arriving from the plasma ~E(t) ~ e(0)/~[. 
By equating these flows and using dependences for 8 and g(0) on ~ from (2.6), we obtain 
~v ~ t-~ X ~ t ~ Thus X increases more slowly than by a diffusion rule, and the dis- 
charge resistance for vapors for an open system is less than for a closed system. 

We consider the question of when a plasma may be considered to be quite dense and for 
cooling of it to use the results of part i, and when to use part 2 for which, as already 
said, the resistance of a discharge for a hydrogen plasma and for metal vapors should be 
compared [by comparing the thickness of deposited plasma calculated by Eqs. (i.ii) and (2.5)]. 
A governing factor will be the regime for which the thickness appears to be less, although 
if these values are not strongly different it is possible to expect a marked effect of the 
unconsidered regime (as for example for the case in Fig. 4) of decreasing deposited plasma 
thickness. However, in any of these regimes if magnetization of the plasma is quite high, 
the effective thermal conductivity may markedly exceed classical thermal conductivity. 
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